web statistics

Publications

Publications in reversed chronological order.

2024

  1. A Self-adaptive Coevolutionary Algorithm
    Mario Alejandro Hevia Fajardo, Erik Hemberg, Jamal Toutouh, Una-May O’Reilly, and Per Kristian Lehre
    In Proceedings of the Genetic and Evolutionary Computation Conference, Jul 2024
  2. The SLO Hierarchy of pseudo-Boolean Functions and Runtime of Evolutionary Algorithms
    Duc-Cuong Dang, and Per Kristian Lehre
    In Proceedings of the Genetic and Evolutionary Computation Conference, Jul 2024
  3. Runtime Analysis of Coevolutionary Algorithms on a Class of Symmetric Zero-Sum Games
    Alistair Benford, and Per Kristian Lehre
    In Proceedings of the Genetic and Evolutionary Computation Conference, Jul 2024
  4. Bicriteria Optimisation of Average and Worst-Case Performance Using Coevolutionary Algorithms
    Alistair Benford, Markus Olhofer, Tobias Rodemann, and Per Kristian Lehre
    In 2024 IEEE Congress on Evolutionary Computation (CEC), Jun 2024
  5. Runtime Analysis of Competitive Co-evolutionary Algorithms for Maximin Optimisation of a Bilinear Function
    Algorithmica, Apr 2024
  6. More Precise Runtime Analyses of Non-elitist Evolutionary Algorithms in Uncertain Environments
    Per Kristian Lehre, and Xiaoyu Qin
    Algorithmica, Feb 2024
  7. Concentration Tail-Bound Analysis of Coevolutionary and Bandit Learning Algorithms
    Per Kristian Lehre, and Shishen Lin
    In Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence, Aug 2024
  8. No Free Lunch Theorem and Black-Box Complexity Analysis for Adversarial Optimisation
    Per Kristian Lehre, and Shishen Lin
    In To appear Proceedings of Conference on Neural Information Processing Systems, Aug 2024
  9. Ranking Diversity Benefits Coevolutionary Algorithms on an Intransitive Game
    In Parallel Problem Solving from Nature – PPSN XVIII, Aug 2024
  10. Overcoming Binary Adversarial Optimisation with Competitive Coevolution
    Per Kristian Lehre, and Shishen Lin
    In Parallel Problem Solving from Nature – PPSN XVIII, Aug 2024
  11. Analysis of a Pairwise Dominance Coevolutionary Algorithm with Spatial Topology
    Mario Hevia FajardoPer Kristian Lehre, Jamal Toutouh, Erik Hemberg, and Una-May O’Reilly
    In Genetic Programming Theory and Practice XX, Aug 2024

2023

  1. Runtime Analysis of a Co-Evolutionary Algorithm: Overcoming Negative Drift in Maximin-Optimisation
    In Proceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, Aug 2023
  2. Self-adjusting Population Sizes for Non-elitist Evolutionary Algorithms: Why Success Rates Matter
    Mario Alejandro Hevia Fajardo, and Dirk Sudholt
    Algorithmica, Jul 2023
  3. Self-adaptation Can Help Evolutionary Algorithms Track Dynamic Optima
    Per Kristian Lehre, and Xiaoyu Qin
    In Proceedings of the Genetic and Evolutionary Computation Conference, Jul 2023
  4. Runtime Analysis with Variable Cost
    Per Kristian Lehre, and Andrew M. Sutton
    In Proceedings of the Genetic and Evolutionary Computation Conference, Jul 2023
  5. Analysis of a Pairwise Dominance Coevolutionary Algorithm And DefendIt
    Per Kristian LehreMario Alejandro Hevia Fajardo, Jamal Toutouh, Erik Hemberg, and Una-May O’Reilly
    In Proceedings of the Genetic and Evolutionary Computation Conference, Jul 2023
  6. How Fitness Aggregation Methods Affect the Performance of Competitive CoEAs on Bilinear Problems
    In Proceedings of the Genetic and Evolutionary Computation Conference, Jul 2023
  7. Is CC-(1+1) EA More Efficient than (1+1) EA on Separable and Inseparable Problems?
    Per Kristian Lehre, and Shishen Lin
    In 2023 IEEE Congress on Evolutionary Computation (CEC), Jul 2023
  8. Theoretical and Empirical Analysis of Parameter Control Mechanisms in the (1 + (λ, λ)) Genetic Algorithm
    Mario Alejandro Hevia Fajardo, and Dirk Sudholt
    ACM Transactions on Evolutionary Learning and Optimization, Jan 2023
  9. Self-Adaptation Can Improve the Noise-Tolerance of Evolutionary Algorithms
    Per Kristian Lehre, and Xiaoyu Qin
    In Proceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, Jan 2023
  10. Self-Adaptation Can Help Evolutionary Algorithms Track Dynamic Optima
    Per Kristian Lehre, and Xiaoyu Qin
    In Proceedings of the Genetic and Evolutionary Computation Conference, Jan 2023

2022

  1. Hard problems are easier for success-based parameter control
    Mario Alejandro Hevia Fajardo, and Dirk Sudholt
    In Proceedings of the Genetic and Evolutionary Computation Conference, Jul 2022
  2. Fast Non-Elitist Evolutionary Algorithms with Power-Law Ranking Selection
    Duc-Cuong Dang, Anton Eremeev, Per Kristian Lehre, and Xiaoyu Qin
    In Proceedings of the Genetic and Evolutionary Computation Conference, Jul 2022
  3. Self-Adaptation via Multi-Objectivisation: A Theoretical Study
    Per Kristian Lehre, and Xiaoyu Qin
    In Proceedings of the Genetic and Evolutionary Computation Conference, Jul 2022
  4. Runtime Analysis of Competitive Co-Evolutionary Algorithms for Maximin Optimisation of a Bilinear Function
    In Proceedings of the Genetic and Evolutionary Computation Conference, Jul 2022
  5. Self-adaptation via Multi-objectivisation: An Empirical Study
    Xiaoyu Qin, and Per Kristian Lehre
    In Parallel Problem Solving from Nature – PPSN XVII, Jul 2022

2021

  1. Runtime Analyses of the Population-Based Univariate Estimation of Distribution Algorithms on LeadingOnes
    Per Kristian Lehre, and Phan Trung Hai Nguyen
    Algorithmica, Oct 2021
  2. Self-adjusting offspring population sizes outperform fixed parameters on the cliff function
    Mario Alejandro Hevia Fajardo, and Dirk Sudholt
    In Proceedings of the 16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, Sep 2021
  3. Self-adjusting population sizes for non-elitist evolutionary algorithms: why success rates matter
    Mario Alejandro Hevia Fajardo, and Dirk Sudholt
    In Proceedings of the Genetic and Evolutionary Computation Conference, Jun 2021
  4. Escaping Local Optima with Non-Elitist Evolutionary Algorithms
    Duc-Cuong Dang, Anton Eremeev, and Per Kristian Lehre
    In Proceedings of the AAAI Conference on Artificial Intelligence, May 2021
  5. Non-Elitist Evolutionary Algorithms Excel in Fitness Landscapes with Sparse Deceptive Regions and Dense Valleys
    Duc-Cuong Dang, Anton Eremeev, and Per Kristian Lehre
    In Proceedings of the Genetic and Evolutionary Computation Conference, May 2021
  6. More Precise Runtime Analyses of Non-Elitist EAs in Uncertain Environments
    Per Kristian Lehre, and Xiaoyu Qin
    In Proceedings of the Genetic and Evolutionary Computation Conference, May 2021
  7. Tail bounds on hitting times of randomized search heuristics using variable drift analysis
    P. K. Lehre, and C. Witt
    Combinatorics, Probability and Computing, May 2021

2020

  1. On the choice of the parameter control mechanism in the (1+(λ, λ)) genetic algorithm
    Mario Alejandro Hevia Fajardo, and Dirk Sudholt
    In Proceedings of the 2020 Genetic and Evolutionary Computation Conference, Jun 2020
  2. Parallel Black-Box Complexity With Tail Bounds
    Per Kristian Lehre, and Dirk Sudholt
    IEEE Transactions on Evolutionary Computation, Jun 2020
  3. Self-Adaptation in Nonelitist Evolutionary Algorithms on Discrete Problems With Unknown Structure
    Brendan Case, and Per Kristian Lehre
    IEEE Transactions on Evolutionary Computation, Jun 2020

2019

  1. An empirical evaluation of success-based parameter control mechanisms for evolutionary algorithms
    In Proceedings of the Genetic and Evolutionary Computation Conference, Jul 2019
  2. Level-Based Analysis of the Univariate Marginal Distribution Algorithm
    Duc-Cuong Dang, Per Kristian Lehre, and Phan Trung Hai Nguyen
    Algorithmica, Feb 2019
  3. Runtime Analysis of the Univariate Marginal Distribution Algorithm under Low Selective Pressure and Prior Noise
    Per Kristian Lehre, and Phan Trung Hai Nguyen
    In Proceedings of the Genetic and Evolutionary Computation Conference, Feb 2019
  4. On the Limitations of the Univariate Marginal Distribution Algorithm to Deception and Where Bivariate EDAs Might Help
    Per Kristian Lehre, and Phan Trung Hai Nguyen
    In Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, Feb 2019

2018

  1. Escaping Local Optima Using Crossover With Emergent Diversity
    Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian Lehre, Pietro S. Oliveto, Dirk Sudholt, and Andrew M. Sutton
    IEEE Transactions on Evolutionary Computation, Feb 2018
  2. Level-Based Analysis of the Population-Based Incremental Learning Algorithm
    Per Kristian Lehre, and Phan Trung Hai Nguyen
    In Parallel Problem Solving from Nature – PPSN XV, Feb 2018
  3. Theory Driven Design of Efficient Genetic Algorithms for a Classical Graph Problem
    Dogan Corus, and Per Kristian Lehre
    In Recent Developments in Metaheuristics, Feb 2018

2017

  1. Populations Can Be Essential in Tracking Dynamic Optima
    Duc-Cuong Dang, Thomas Jansen, and Per Kristian Lehre
    Algorithmica, Jun 2017
  2. Improved Runtime Bounds for the Univariate Marginal Distribution Algorithm via Anti-Concentration
    Per Kristian Lehre, and Phan Trung Hai Nguyen
    In Proceedings of the Genetic and Evolutionary Computation Conference, Jun 2017
  3. Level-Based Analysis of Genetic Algorithms and Other Search Processes
    D. Corus, D. C. Dang, A. V. Eremeev, and P. K. Lehre
    IEEE Transactions on Evolutionary Computation, Jun 2017

2016

  1. Runtime Analysis of Non-elitist Populations: From Classical Optimisation to Partial Information
    Duc-Cuong Dang, and Per Kristian Lehre
    Algorithmica, Jul 2016
  2. Self-adaptation of Mutation Rates in Non-elitist Populations
    Duc-Cuong Dang, and Per Kristian Lehre
    In Parallel Problem Solving from Nature – PPSN XIV, Jul 2016
  3. Limits to Learning in Reinforcement Learning Hyper-heuristics
    Fawaz Alanazi, and Per Kristian Lehre
    In Evolutionary Computation in Combinatorial Optimization, Jul 2016
  4. A Parameterised Complexity Analysis of Bi-level Optimisation with Evolutionary Algorithms
    Dogan Corus, Per Kristian Lehre, Frank Neumann, and Mojgan Pourhassan
    Evolutionary Computation, Jul 2016
  5. Escaping Local Optima with Diversity Mechanisms and Crossover
    Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian Lehre, Pietro S. Oliveto, Dirk Sudholt, and Andrew M. Sutton
    In Proceedings of the Genetic and Evolutionary Computation Conference 2016, Jul 2016
  6. Emergence of Diversity and Its Benefits for Crossover in Genetic Algorithms
    Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian Lehre, Pietro S. Oliveto, Dirk Sudholt, and Andrew M. Sutton
    In Parallel Problem Solving from Nature – PPSN XIV, Jul 2016

2015

  1. Toward a unifying framework for evolutionary processes
    Tiago Paixão, Golnaz Badkobeh, Nick Barton, Doğan Çörüş, Duc-Cuong Dang, Tobias Friedrich, Per Kristian Lehre, Dirk Sudholt, Andrew M. Sutton, and Barbora Trubenová
    Journal of Theoretical Biology, Jul 2015
  2. Black-Box Complexity of Parallel Search with Distributed Populations
    Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt
    In Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII, Jul 2015
  3. Efficient Optimisation of Noisy Fitness Functions with Population-Based Evolutionary Algorithms
    Duc-Cuong Dang, and Per Kristian Lehre
    In Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII, Jul 2015
  4. Simplified Runtime Analysis of Estimation of Distribution Algorithms
    Duc-Cuong Dang, and Per Kristian Lehre
    In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, Jul 2015
  5. Populations Can Be Essential in Dynamic Optimisation
    Duc-Cuong Dang, Thomas Jansen, and Per Kristian Lehre
    In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, Jul 2015

2014

  1. Level-Based Analysis of Genetic Algorithms and Other Search Processes
    Dogan Corus, Duc-Cuong Dang, Anton V. Eremeev, and Per Kristian Lehre
    In Parallel Problem Solving from Nature – PPSN XIII, Jul 2014
  2. Unbiased Black-Box Complexity of Parallel Search
    Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt
    In Parallel Problem Solving from Nature – PPSN XIII, Jul 2014
  3. Refined Upper Bounds on the Expected Runtime of Non-Elitist Populations from Fitness-Levels
    Duc-Cuong Dang, and Per Kristian Lehre
    In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, Jul 2014
  4. Evolution under Partial Information
    Duc-Cuong Dang, and Per Kristian Lehre
    In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, Jul 2014
  5. Runtime analysis of the (1+1) EA on computing unique input output sequences
    Per Kristian Lehre, and Xin Yao
    Information Sciences, Jul 2014
  6. Concentrated Hitting Times of Randomized Search Heuristics with Variable Drift
    Per Kristian Lehre, and Carsten Witt
    In Algorithms and Computation, Jul 2014
  7. Runtime analysis of selection hyper-heuristics with classical learning mechanisms
    Fawaz Alanazi, and Per Kristian Lehre
    In 2014 IEEE Congress on Evolutionary Computation (CEC), Jul 2014

2013

  1. A Runtime Analysis of Simple Hyper-Heuristics: To Mix or Not to Mix Operators
    Per Kristian Lehre, and Ender Özcan
    In Proceedings of the Twelfth Workshop on Foundations of Genetic Algorithms XII, Jul 2013
  2. The Generalized Minimum Spanning Tree Problem: A Parameterized Complexity Analysis of Bi-Level Optimisation
    Dogan Corus, Per Kristian Lehre, and Frank Neumann
    In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, Jul 2013
  3. Finite First Hitting Time Versus Stochastic Convergence in Particle Swarm Optimisation
    Per Kristian Lehre, and Carsten Witt
    In Advances in Metaheuristics, Jul 2013
  4. Theoretical Advances in Evolutionary Dynamic Optimization
    Philipp Rohlfshagen, Per Kristian Lehre, and Xin Yao
    In Evolutionary Computation for Dynamic Optimization Problems, Jul 2013

2012

  1. On the Impact of Mutation-Selection Balance on the Runtime of Evolutionary Algorithms
    Per Kristian Lehre, and Xin Yao
    IEEE Transactions on Evolutionary Computation, Apr 2012
  2. Black-Box Search by Unbiased Variation
    Per Kristian Lehre, and Carsten Witt
    Algorithmica, Apr 2012

2011

  1. Crossover can be constructive when computing unique input–output sequences
    Per Kristian Lehre, and Xin Yao
    Soft Computing, Sep 2011
  2. Faster Black-Box Algorithms through Higher Arity Operators
    Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Per Kristian Lehre, Markus Wagner, and Carola Winzen
    In Proceedings of the 11th Workshop Proceedings on Foundations of Genetic Algorithms, Sep 2011
  3. Non-Uniform Mutation Rates for Problems with Unknown Solution Lengths
    Stephan Cathabard, Per Kristian Lehre, and Xin Yao
    In Proceedings of the 11th Workshop Proceedings on Foundations of Genetic Algorithms, Sep 2011
  4. Fitness-Levels for Non-Elitist Populations
    In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, Sep 2011

2010

  1. Negative Drift in Populations
    In Parallel Problem Solving from Nature, PPSN XI, Sep 2010
  2. Fixed Parameter Evolutionary Algorithms and Maximum Leaf Spanning Trees: A Matter of Mutation
    Stefan Kratsch, Per Kristian Lehre, Frank Neumann, and Pietro Simone Oliveto
    In Parallel Problem Solving from Nature, PPSN XI, Sep 2010
  3. Black-Box Search by Unbiased Variation
    Per Kristian Lehre, and Carsten Witt
    In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, Sep 2010
  4. Ant Colony Optimization and the Minimum Cut Problem
    Timo Kötzing, Per Kristian Lehre, Frank Neumann, and Pietro Simone Oliveto
    In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, Sep 2010
  5. On the Effect of Populations in Evolutionary Multi-Objective Optimisation
    Oliver Giel, and Per Kristian Lehre
    Evolutionary Computation, Sep 2010

2009

  1. Runtime analysis of search heuristics on software engineering problems
    Per Kristian Lehre, and Xin Yao
    Frontiers of Computer Science in China, Mar 2009
  2. On the Impact of the Mutation-Selection Balance on the Runtime of Evolutionary Algorithms
    Per Kristian Lehre, and Xin Yao
    In Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, Mar 2009
  3. Theoretical analysis of rank-based mutation - combining exploration and exploitation
    Pietro S. Oliveto, Per Kristian Lehre, and Frank Neumann
    In 2009 IEEE Congress on Evolutionary Computation, Mar 2009
  4. When is an estimation of distribution algorithm better than an evolutionary algorithm?
    Tianshi Chen, Per Kristian Lehre, Ke Tang, and Xin Yao
    In 2009 IEEE Congress on Evolutionary Computation, Mar 2009
  5. Dynamic Evolutionary Optimisation: An Analysis of Frequency and Magnitude of Change
    Philipp Rohlfshagen, Per Kristian Lehre, and Xin Yao
    In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, Mar 2009

2008

  1. Theoretical Runtime Analyses of Search Algorithms on the Test Data Generation for the Triangle Classification Problem
    Andrea Arcuri, Per Kristian Lehre, and Xin Yao
    In 2008 IEEE International Conference on Software Testing Verification and Validation Workshop, Mar 2008
  2. Crossover Can Be Constructive When Computing Unique Input Output Sequences
    Per Kristian Lehre, and Xin Yao
    In Simulated Evolution and Learning, Mar 2008

2007

  1. Phenotypic complexity and local variations in neutral degree
    Per Kristian Lehre, and Pauline C. Haddow
    Biosystems, Mar 2007
  2. The genotypic complexity of evolved fault-tolerant and noise-robust circuits
    Morten Hartmann, Pauline C. Haddow, and Per Kristian Lehre
    Biosystems, Mar 2007
  3. Runtime analysis of (1+1) EA on computing unique input output sequences
    Per Kristian Lehre, and Xin Yao
    In Proceedings of 2007 IEEE Congress on Evolutionary Computation (CEC 2007), Mar 2007

2006

  1. Aetiology-specific patterns in end-stage heart failure patients identified by functional annotation and classification of microarray data
    Vidar Beisvag, Per Kristian Lehre, Herman Midelfart, Halfdan Aass, Odd Geiran, Arne Kristian Sandvik, Astrid Lægreid, Jan Komorowski, and Øyvind Ellingsen
    European Journal of Heart Failure, Mar 2006
  2. Accessibility and Runtime Between Convex Neutral Networks
    Per Kristian Lehre, and Pauline C. Haddow
    In Simulated Evolution and Learning, Mar 2006
  3. On the Effect of Populations in Evolutionary Multi-Objective Optimization
    Oliver Giel, and Per Kristian Lehre
    In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Mar 2006
  4. Complexity and Geometry in Artificial Development
    Mar 2006

2005

  1. The Genotypic complexity of Evolved Fault-tolerant and Noise-robust Circuits
    Morten Hartmann, Per Kristian Lehre, and Pauline C. Haddow
    In Sixth International Workshop on Information Processing in Cells and Tissues (IPCAT2005), Sep 2005
  2. Evolved digital circuits and genome complexity
    M. Hartmann, P.K. Lehre, and P.C. Haddow
    In 2005 NASA/DoD Conference on Evolvable Hardware (EH’05), Sep 2005
  3. Accessibility between neutral networks in indirect genotype-phenotype mappings
    P.K. Lehre, and P.C. Haddow
    In 2005 IEEE Congress on Evolutionary Computation, Sep 2005
  4. Phenotypic Complexity and Local Variations in Neutral Degree
    Per Kristian Lehre, and Pauline C Haddow
    In Proceedings of the Sixth International Workshop on Information Processing in Cells and Tissues (IPCAT2005), Sep 2005

2004

  1. Development and Complexity-Based Fitness Function Modifiers
    Per Kristian Lehre, and Morten Hartmann
    In Proceedings of Workshop on Learning and Regeneration in Developmental Systems (GECCO 2004), Sep 2004

2003

  1. Developmental mappings and phenotypic complexity
    P.K. Lehre, and P.C. Haddow
    In The 2003 Congress on Evolutionary Computation, 2003. CEC ’03., Sep 2003